Week 15 Worksheet - Last Worksheet

Instructions. Follow the instructions given by your TA. You are not expected to finish all the problems. :)

- 1. (a) Compute $\frac{d}{dx} \int_{\ln x}^{x^3} e^{\sin t} dt$
 - (b) $\lim_{x\to 0} \frac{\int_1^{1+5x} (4-\cos 2\pi t)^3 dt}{x}$
 - (c) $\lim_{r\to 0} \frac{1}{r} \int_{e^{4r}}^{1} \sqrt{3 + \frac{1}{x}} dx$

(Remark: Other ways of testing could be asking max/min, increasing interval, concave etc)

2. (from 2016 final)

Write down the integral which represent the volumes of the following solids. (no need to compute them)

- (a) The solid generated by revolving the region in the 1st quadrant bounded by $y = \sqrt{x}$, $y = \frac{x}{2}$ about the line y = 2.
- (b) The solid generated by revolving the region in the 1st quadrant bounded below by $y = e^x$ and above by y = e, about the y-axis.
- (c) The solid generated by revolving the region in the 1st quadrant bounded to the right by $y = \sqrt{4 x^2}$ and to the left by y = x about the line x = -1.

(a)
$$y=\sqrt{x}$$
 $y=\sqrt{x}$
 $y=\sqrt{x}$

(b) $y=\sqrt{x}$
 $y=\sqrt{x}$
 $y=\sqrt{x}$
 $y=\sqrt{x}$
 $y=\sqrt{x}$

(c) $y=\sqrt{x}$
 $y=$

3. (from 2015 final)

Consider the region in the first quadrant bounded above by the function $y = e^x$, below by y = x, to the left by y-axis, and to the right by x = 1.

- (a) Set up an integral that describes the area of the region. (no need to calculate the integral)
- (b) Set up an integral describing the volume of the solid generated by the rotating around the x-axis.

$$(a) \int_0^1 e^{x} - x dx$$

(b)
$$\int_{0}^{1} \pi(e^{\chi})^{2} - \pi(\chi)^{2} dx$$

4. Consider the finite region bounded by $x = y^2$ and x + y = 2.

(a) Set up the integral for its area

(b) Revolve the region around $x = 2\pi$. Set up the integral for the volume.

a intersection pts: (4,-2) (1,1)

$$\int_{-2}^{1} 2-y - y^2 dy$$

around x=27

(b)
$$\int_{-2}^{1} \pi (2\pi - y^2)^2 - \pi (2\pi - 24y)^2 dy$$

around y= 211